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Abstract

This paper quantifies the contribution of unemployment inflows and outflows to

cyclical changes in the unemployment rate. I show that the time series behavior of

worker flows implies that they exhibit a specific dynamic structure. I then implement

a simple identification strategy motivated by this evidence in order to empirically

separate changes in job separation and job finding. I find that both margins contribute

significantly to unemployment volatility and that their interaction is important for

understanding the business cycle dynamics of the unemployment rate. My results

suggest that models of the labor market should aim to capture this interaction as well

as cyclical variation in job loss.
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1 Introduction

What accounts for the rise in the unemployment rate during a recession? Economists
have debated this seemingly straightforward question for at least four decades. Reaching
a definitive conclusion has proved challenging as it requires quantifying the contributions
of two different, but potentially interlinked channels: in recessions, employed workers
lose jobs, but unemployed workers also have trouble finding jobs. In this paper, I provide
evidence that both inflows to and outflows from unemployment play an important role
in the business cycle dynamics of the labor market.

I begin by examining the dynamic properties of unemployment inflows and outflows
and present three pieces of motivating evidence. First, while the rate at which workers
find jobs out of unemployment is procyclical, the number of workers that find jobs out of
unemployment is countercyclical. Next, aggregate unemployment outflows (job finding)
are, on average, predated by aggregate unemployment inflows (job separation). I find
that the job finding rate displays the strongest cross-correlation with the lagged rather
than the contemporaneous job separation rate; the same holds true for the relationship
between the unemployment rate and the job separation rate.1 Last, I test formally for
Granger causality and find that unemployment inflows Granger-cause unemployment
outflows. Hence, unemployment and worker flows display a specific dynamic structure.
To my knowledge, the last of these three facts is new to the literature.

Motivated by these findings, I design a simple identification strategy in the context
of a structural vector autoregression (SVAR) framework to isolate disturbances in labor
market variables. The goal is to estimate the response of job finding, job separation, and
unemployment to exogenous changes in these variables and to use the recovered shocks
to decompose fluctuations in the unemployment rate. I use several techniques familiar to
the SVAR literature to formally examine the role played by unemployment inflows and
outflows in driving changes in unemployment.

A benefit of this approach is that it does not require that certain worker flow margins
be held constant when examining the contribution of others. For instance, a spike in job
separations may feed back on job creation incentives, in turn affecting the job finding rate.
In this case, my methodology accounts for the endogenous reaction of the job finding rate
to an initial change in unemployment inflows. Although this procedure does not identify

1I use the term “job separation” to refer to movements of workers from employment to unemployment (EU
flows). Of course, true job separations include instances where a worker moves from employment to not-
in-the-labor-force (EN flows) or from one employer to another (employer-to-employer flows). However,
labeling EU flows as “job separation” and UE flows as “job finding” provides a convenient shorthand. See
Section 2 for more details on terminology.
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the underlying fundamental disturbances that drive business cycles, the properties of the
unemployment inflow and outflow “shocks” that I recover shed light on the forces that
contribute to the cyclical variance of unemployment.

The assumptions behind my identification strategy rest on the time series properties
of worker flows I document as well as the relationship between worker flows and the
distribution of unemployment duration. The evidence on the lead-lag structure of worker
flows implies that job separations do not react immediately to changes in job finding or
unemployment. I therefore restrict the impact response of the unemployment rate and the
job finding rate to be zero following a shock to job separation. I supplement these zero
restrictions with sign restrictions on the response of the unemployment rate and average
unemployment duration to innovations in job finding and job separation. I assume that
while shocks to job finding move the unemployment rate and average unemployment
duration in the same direction, shocks to job separation move the unemployment rate
and average unemployment duration in opposite directions.

Because my identification strategy combines both zero and sign restrictions, I use
Bayesian techniques to estimate the model following recent advances in the literature
(Rubio-Ramı́rez et al., 2010; Arias et al., 2018). My baseline specification includes four
variables: the job finding probability, the job separation probability, the unemployment
rate, and average unemployment duration for the period 1948Q1–2019Q4. I recover four
shocks in total, which I label as shocks to the Unemployment Inflow, Unemployment
Outflow, Unemployment Level, and Unemployment Length.

I find that Unemployment Inflow shocks lead to large movements in all four series.
In response to a (contractionary) Unemployment Inflow shock, the job separation proba-
bility increases significantly and remains elevated for almost two years. The job finding
probability reacts little on impact, but then falls for several periods before slowly return-
ing to trend. The unemployment rate rises on impact and displays a hump-shaped pat-
tern: the initial increase in job separation increases unemployment and the subsequent
decline in job finding causes it to rise further. Lastly, average unemployment duration
falls on impact, but then follows an increasing, hump-shaped pattern as workers accu-
mulate in the unemployment pool. In contrast, while (contractionary) Unemployment
Outflow shocks lead to increases in the unemployment rate and average unemployment
duration, they are of smaller magnitude and are not associated with increases in the job
separation probability.

I also use local projections (Jordà, 2005) to assess the impact of unemployment inflow
and outflow shocks on auxiliary labor market variables. I find that while unemployment
inflow shocks are consistent with the business cycle properties of gross worker flows and
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vacancy posting, unemployment outflow shocks are not. In particular, a contractionary
unemployment inflow shock leads to a significant and persistent increase in the total
flow of workers between unemployment-and-employment and between employment-
and-unemployment. Both of these series are countercyclical in the data, which points to
changes in unemployment inflows as plausible drivers of gross worker flows. Addition-
ally, unemployment inflow shocks lead to large changes in vacancy posting. I find that
the level of vacancies falls by about 50% following a contractionary inflow shock. This
pattern is consistent with Beveridge Curve dynamics, as unemployment and vacancies
move in opposite directions. On the other hand, unemployment outflow shocks do not
lead to significant movements in gross worker flows or vacancies.

Having documented the properties of unemployment inflow and outflow shocks, I
turn to quantifying their contributions to fluctuations in unemployment. I find that on
average, unemployment inflow shocks explain about 50% of the overall variance of the
unemployment rate, while unemployment outflow shocks account for no more than 20%.
However, I note several caveats to this result. First, their contributions are not constant
across horizons; unemployment outflow shocks display larger contributions at shorter
horizons. Second, the interaction between job finding and job separation in response to
unemployment inflow shocks greatly affects this calculation. I find that shutting down
their interaction such that the job separation probability does not endogenously affect the
job finding probability (and vice versa) significantly decreases (increases) the contribution
of unemployment inflow (outflow) shocks to unemployment variance. Lastly, the mix
of unemployment inflow and outflow shocks has been different in different recessions.
While unemployment inflow shocks primary drove the persistent rise in unemployment
during the 2008 recession, unemployment outflow shocks played a greater role in labor
market dynamics during the 2001 recession. This suggests that to understand the cyclical
behavior of the unemployment rate, both margins should be considered in conjunction.

I conclude by discussing the implications of my findings for the development of
macroeconomic models of the labor market. Since the influential work of Shimer (2005,
2012), much of the literature’s focus shifted toward modeling forces that generate cyclical
movements in the job finding rate, while treating the job separation rate as exogenous and
acyclical. Though I am not the first to point this out, the dynamic relationship between
unemployment inflows and outflows cautions against this approach.2 In addition to not
being able to explain the increase in gross unemployment outflows during a recession,
treating the job separation probability as fixed does not allow for a connection between

2In particular, see discussions in Elsby et al. (2009), Fujita and Ramey (2009), Fujita and Ramey (2012), and
Mercan et al. (2024), among others.
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changes in inflows and outflows by assumption. My results suggest that their interaction
is a key feature of unemployment fluctuations that models of the labor market should
aim to explicitly capture.

Related literature My paper contributes to both empirical and theoretical studies on the
dynamics of labor market flows. In a seminar paper, Darby et al. (1986) find that the flow
into unemployment is the main determinant of the unemployment rate and declare that
“the ins win.” Blanchard and Diamond (1990) show that the amplitude of changes in the
total inflow to unemployment is larger than the amplitude of changes in the total outflow,
and conclude that reduced employment in a recession results from higher job destruction.
However, both Hall (2005) and Shimer (2012) challenge the results of these earlier studies
and argue that contrary to the conventional wisdom, unemployment instead rises in a
recession because it becomes more difficult to find a job. In contrast to the two earlier
studies that considered the total number of workers exiting or entering unemployment,
Hall (2005) and Shimer (2012) emphasize the importance of examining the probabilities of
unemployment inflows and outflows. In my study, I attempt to reconcile the evidence in
both sets of papers by studying both gross worker flows and flow probabilities.

My results are in line with those of several papers that initially responded to the Hall-
Shimer critique and warned that studying movements in the job finding rate alone paint
an incomplete picture of labor market fluctuations. Elsby et al. (2009) decompose changes
in the unemployment rate and argue that it is important to understand both procyclical
movements in the job finding rate and countercyclical movements in the job separation
rate. Fujita and Ramey (2009) re-examine gross flows data and find that allowing for a
dynamic interaction between job finding and job separation leads to a larger contribution
of the separation rate in unemployment dynamics. Fujita (2011) uses sign restrictions on
the joint behavior of unemployment and vacancies and finds that the dynamics of job loss
help explain the cyclical behavior of labor market variables. Canova et al. (2013) study
the role of both investment-neutral and investment-specific technology shocks in labor
market dynamics and find that the impact response of unemployment is primarily driven
by the job separation rate, while the job finding rate accounts for most of its persistence.
Their evidence is consistent with the interpretation that unemployment initially increases
in a recession due to a wave of layoffs and remains high due to a slow recovery in the job
finding rate. I take a different approach to identifying labor market disturbances, but the
conclusions of my analysis are consistent with these studies.

More recently, several studies have outlined theoretical grounds for a link between
increased job separation rates and decreased job finding rates during a recession. For
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instance, Ahn and Hamilton (2020) and Gregory et al. (2022) argue that if workers with
low individual job finding propensities disproportionately enter the unemployment pool
in recessions, then the aggregate job finding rate will fall due to a composition effect.
Coles and Moghaddasi-Kelishomi (2018), relax the free entry of vacancies assumption in
the Diamond-Mortensen-Pissarides (DMP) framework and find a substantial role for job
separation shocks in unemployment fluctuations. They show that if vacancy creation is
less than infinitely elastic, as is assumed to be the case in the standard DMP model, then
both labor market tightness and the job finding rate decline in response to an increase in
job separations. Engbom (2021) hypothesizes that if unemployed workers apply to jobs
less selectively than employed workers on average, then it becomes harder for firms to
assess which workers are qualified in times of high unemployment, putting downward
pressure on hiring incentives. Mercan et al. (2024) show that if new hires and incumbent
workers are imperfect substitutes, then increases in the separation rate reduce job creation
incentives because “congestion” in hiring decisions renders firms unable to fully absorb
the resulting increase in unemployment. In my paper, I estimate a decline in the job
finding probability after a bout of increased separations, providing empirical evidence
for these mechanisms.

Lastly, my paper contributes to the literature on SVAR identification using a combina-
tion of zero and sign restrictions. In a seminal paper, Rubio-Ramı́rez et al. (2010) provide
general conditions for identification in SVAR models and develop efficient algorithms for
estimation and inference. Arias et al. (2018) build on the methodology in Rubio-Ramı́rez
et al. (2010) and extend their results to allow for both sign and zero restrictions. Arias et al.
(2019) apply this methodology in order to identify the effects of monetary policy shocks
on output and prices. Though I make no theoretical contributions of my own, my study
is the first to my knowledge to apply this methodology in the context of the literature on
the ins and outs of unemployment.

Layout The rest of the paper is structured as follows. Section 2 describes how I measure
worker flows and Section 3 presents motivating evidence for the identifying restrictions
used in my empirical analysis. In Section 4, I present specific details on the empirical
strategy and discuss the identification assumptions. In Section 5, I present estimates of
the effect of unemployment shocks on different labor market variables and use the results
to formally decompose overall fluctuations in unemployment. Section 6 discusses the
implications of my findings for models of the labor market. Section 7 concludes.
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2 Measuring Worker Flows

I measure worker transitions across labor market states using the Current Population
Survey (CPS) as well as publicly available data from the Bureau of Labor Statistics (BLS). I
employ two separate methodologies to measure worker flows, which both follow Shimer
(2012). This section describes how I construct these measures and also serves to define
key terms that I will use throughout the rest of the paper.

2.1 Two-State Model

First, I measure the inflow rate to unemployment and outflow rate from unemployment
abstracting from movements into and out of the labor force. I follow Shimer (2012) and
define the job finding probability Ft for some interval [t, t+ 1) as:

Ft = 1−
Ut+1 − U s

t+1

Ut

(1)

where Ut is total unemployment and U s
t is total short-term unemployment in month t.

Both series are published by the BLS starting in January 1948.3 Let ft ≡ − ln(1 − Ft) be
the associated job finding rate, which is the arrival rate of a Poisson process. The equation
below implicitly defines the employment exit rate xt

Ut+1 =
(1− e−ft−xt)xt

ft + xt
Lt + e−ft−xtUt (2)

where I assume that the size of the labor forceLt is constant. I then compute the associated
employment exit probability Xt ≡ 1− e−xt .

Though abstracting from changes in labor force participation certainly affects the
level and cyclicality of worker flows (Elsby et al., 2015), this approach allows me to use
publicly available time series with a long time span. I use the series from the “two-state
model” in the my empirical analysis, as the larger sample size facilitates estimation.

2.2 Three-State Model

Second, I construct additional measures of transition rates between labor market states
using CPS microdata. The CPS is published on a monthly basis and due to the rotating
panel structure of the survey, roughly three quarters of individuals in a given month can

3Specifically, I use the series LNS13000000: Unemployment Level and LNS13008396: Number Unemployed
for Less than 5 Weeks.
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be linked to their survey responses in the previous month.4 This facilitates the construc-
tions of measures of the total number of workers who transition between labor market
states – which I will refer to as “gross flows” – as well as the probability that a worker
transitions between labor market states – which I will refer to as “flow probabilities.”

I gather data from IPUMS CPS for the period January 1976 to December 2019 and
link survey respondents across consecutive months using the unique identifier CPSIDV
(Flood et al., 2022).5 This variable includes linking criteria that ensures individuals match
on age, sex, and race characteristics. After linking individuals, information on their em-
ployment status in each month allows me to construct measures of both gross flows and
flow probabilities. Specifically, I use the variable EMPSTAT to determine whether a given
individual was employed (E), unemployed (U ), or not-in-the-labor-force (N ) in a partic-
ular month. I then compute weighted sums of the number of individuals who transition
across labor market states using longitudinal weights provided by IPUMS CPS.

Defining Flows Let A and B denote two labor market states. Let 1{Ai,t−1 & Bi,t} be an
indicator for whether worker i was in state A at time t − 1 and in state B at time t. The
aggregate gross flow of workers from labor market state A in month t− 1 to labor market
state B in month t is defined as follows:

ABt ≡
∑
i

1{Ai,t−1 & Bi,t} · wi,t−1

where wi,t−1 are weights corresponding to the probability of worker i being included in
the sample. For instance, the aggregate gross flow UEt is simply the (weighted) number
of workers who were unemployed in time t− 1 and employed in time t.

The corresponding flow probability for workers between states A and B is given by:

Pt(AB) ≡
∑

i 1{Ai,t−1 & Bi,t} · wi,t−1∑
i 1{Ai,t−1} · wi,t−1

In this equation, the expression
∑

i 1{Ai,t−1} · wi,t−1 is the weighted sum of workers in
state A at time t − 1. For instance, the aggregate flow probability Pt(UE) is simply the
(weighted) number of workers who were unemployed in time t−1 and employed in time
t, divided by the (weighted) number of workers who were unemployed in time t− 1.

4In particular, households are initially interviewed for four consecutive months, then excluded from the
sample for the following eight months, and then included in the CPS again for the subsequent four months.

5See the following link for more information on linking individuals across surveys in the IPUMS CPS data:
https://cps.ipums.org/cps/cps_linking_documentation.shtml.

7

https://cps.ipums.org/cps/cps_linking_documentation.shtml


Lastly, I seasonally adjust all flow measures using the Census Bureau’s X-13-ARIMA-
SEATS procedure. I also adjust flow probabilities for time aggregation bias following the
methodology in Shimer (2012). I use the series produced by the “three state model” in the
motivating evidence section of the paper.

Appendix A contains additional measurement details, including a small correction
to the short-term unemployment series and the time aggregation adjustment procedure.
Appendix Figures A.1 and A.2 show that I successfully replicate and extend the series
from Shimer (2012)’s original analysis. Moreover, I show in Appendix Figure A.3 that
flow probabilities obtained using the two-state model and the three-state model have sim-
ilar cyclical properties. Therefore, after documenting the dynamic properties of worker
flows using series produced by the three-state model, I use the larger sample period of
the flow series produced by the two-state model for my empirical analysis.

3 Motivating Evidence

In this section, I present three stylized facts about labor market flows that motivate the
assumptions behind my empirical analysis. First, I show that while the probability of
transitioning from U -to-E is procyclical, the number of workers transitioning from U -to-
E is countercyclical. Next, I find that both the unemployment rate and the U -to-E flow
probability have the strongest correlation with lagged values of the E-to-U flow probabil-
ity. Last, I formally test this relationship and find that unemployment inflows Granger
cause unemployment outflows.

3.1 Countercyclicality of Gross Flows

Figure 1 displays the cyclical properties of of worker flows. I use the recently devised
filtering method in Hamilton (2018) to extract the cyclical component of each series. Data
are plotted in terms of percent deviations from the respective trend. Panel (a) shows flow
probabilities while Panel (b) shows the corresponding gross flow series.

Panel (b) clearly indicates that both UEt and EUt gross flows are countercyclical,
meaning that they rise around NBER recession dates and fall during business cycle expan-
sions. Therefore, the total number of workers exiting unemployment, somewhat counter-
intuitively, rises in recessions. An older literature that examined the cyclicality of worker
flows also recognized this pattern (Darby et al., 1986; Davis, 1987; Blanchard and Dia-
mond, 1990; Ritter, 1993). Harkening back to the findings of this earlier literature, Figure
1 shows that the amplitude of fluctuations in EUt is greater than that of UEt.
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Figure 1: Cyclical Properties of Worker Flows
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Notes: Black, solid lines show U -to-E flows. Orange, dashed lines show E-to-U flows. Series
Hamilton filtered with horizon h and lag p parameters set to 8 and 4 quarters, respectively. I
take a quarterly average of monthly values before applying the filter. Monthly series adjusted for
seasonal variation and time aggregation bias.

3.2 Cross Correlations of Flow Probabilities

I now investigate the lead-lag structure among flow probabilities and the unemployment
rate. To do so, I compute cross-correlations of these variables at different horizons. In
particular, I calculate the correlation coefficient between some variableXt and some other
variable Yt+j , where I allow j to vary between -8 and 8 quarters and use a uniform sample
size across different values of j. Figure 2 contains the results of this exercise.

Focusing first on the left panel of Figure 2a, the black, solid line shows that the
unemployment-to-employment flow probability P (UE) is negatively correlated with the
employment-to-unemployment flow probability P (EU), on average. Times when it is
easier to find a job are times when a lower fraction of workers exit employment and vice
versa. However, the correlation is not constant across different horizons. In particular,
the red, dashed line shows that it reaches a low point at j = −2 quarters, indicating that
P (UE) is most strongly (negatively) correlated with previous values of P (EU). Therefore,
P (EU) leads P (UE) in time.

In the center panel, Figure 2b shows that a similar pattern exists in the relationship
between the unemployment rate (u) and P (EU). The cross-correlation between these two
variable troughs at a value of j = −2 quarters. Therefore, movements in the E-to-U
flow probability also lead movements in the unemployment rate. Lastly, turning to the
right panel, Figure 2c shows that this is not the case with the U -to-E flow probability.
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Figure 2: Cross-Correlations of Flow Probabilities and Unemployment
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(b) ut and Pt+j(EU)
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Notes: Series Hamilton-filtered with horizon h and lag p parameters set to 8 and 4 quarters,
respectively. I take a quarterly average of monthly values before applying the filter. Monthly
series adjusted for seasonal variation and time aggregation bias. Correlation coefficient is the
Kendall rank correlation coefficient. Sample = 1980Q4–2017Q4.

Instead, the minimum correlation between u and P (UE) occurs at j = 0. Therefore, the
contemporaneous relationship between the U -to-E flow probability and unemployment is
the strongest. Collectively, this evidence suggests that while changes in U -to-E flows
occur in simultaneity with changes in the unemployment rate, changes in E-to-U flows
predate changes in the unemployment rate.

3.3 Granger Causality in Gross Flows

Next, I further explore the dynamic structure of worker flows by conducting a formal
test of whether certain labor market flows Granger-cause others. Following the approach
outlined in Hamilton (1994), I conduct an econometric test for whether some time series
variable xt Granger-causes some other time series variable yt.6 For a given lag length L, I
estimate the following two equations by OLS.

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αLyt−L + β1xt−1 + β2xt−2 + · · ·+ +βLxt−L + ut (3)

yt = γ0 + γ1yt−1 + γ2yt−2 + · · ·+ γpyt−L + et (4)

Then, I conduct an F -test of the null hypothesis H0 : β1 = β2 = · · · = βL = 0. This
tests whether the variable xt is important in predicting values of yt in a forecasting sense.
If xt Granger-causes yt, then information contained in xt will be useful in forecasting yt

6I implement the in-sample F -test specified in Hamilton (1994) Chapter 11.2, pages 304–305.
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above and beyond the information contained in past values of yt. To implement the test,
I construct the test statistic below

S1 ≡
(RSS0 −RSS1)/L

RSS1/(T − 2L− 1)

where RSS1 =
∑T

t=1 û
2
t is the sum of squared residuals from the regression in Equation

(3), RSS0 =
∑T

t=1 ê
2
t is the sum of squared residuals from the regression in Equation (4),

and T is the number of time periods in the sample. I compare the value of the test statistic
to the critical value from the F distribution with parameters L and T − 2L− 1.

Table 1: Does EUt Granger Cause UEt?

Raw Data Hamilton-Filtered Data

L = 1 L = 2 L = 3 L = 4 L = 1 L = 2 L = 3 L = 4

S1 72.14 37.24 22.71 16.42 73.86 37.85 23.46 17.49
Crit. Val. 6.80 4.74 3.91 3.44 6.80 4.74 3.91 3.44
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Reject? Y Y Y Y Y Y Y Y

BIC 3892.47 3900.34 3909.83 3918.69 857.01 865.19 873.88 883.61

Notes: Raw Data are quarterly averages of monthly values. Hamilton-Filtered Data are quarterly
averages of monthly values, then Hamilton-filtered with quarterly parameters h = 8 and p = 4.
Significance level α = 1%. Sample = 1979Q4–2019Q4.

Table 1 displays the results of this exercise using the gross flows data, where EUt

is the x variable (independent variable) and UEt is the y variable (dependent variable)
in the unrestricted regression, Equation (3). I choose a significance level of α = 1% and
report the test statistic, critical value, and p-value of the test, as well as whether the test
rejects the null hypothesis. Note that under the null hypothesis, the independent variable
does not Granger-cause the dependent variable. If the test rejects the null hypothesis, then
EUt is said to Granger-cause UEt. I report the results of the test using several different lag
lengths as well as using raw or filtered data. I also report the Bayesian information criteria
(BIC) value for each lag length, which favors a value of L = 1. I find overwhelming
support for the result that EUt Granger-causes UEt, with p-values indistinguishable from
0 in most instances.

On the other hand, UEt gross flows do not appear to Granger cause EUt gross flows.
Table 2 reports the results of the test using UEt as the independent variable and EUt as
the dependent variable. Across lag lengths and filtering methods considered, the null hy-
pothesis of no Granger-causality is not rejected for the given significance level. Therefore,
although the two series exhibit a very high contemporaneous correlation, a clear lead-lag
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Table 2: Does UEt Granger Cause EUt?

Raw Data Hamilton-Filtered Data

L = 1 L = 2 L = 3 L = 4 L = 1 L = 2 L = 3 L = 4

S1 5.46 2.17 0.74 0.93 4.29 4.52 1.65 2.59
Crit. Val. 6.80 4.74 3.91 3.45 6.80 4.74 3.91 3.45
p-value 0.02 0.12 0.53 0.45 0.04 0.01 0.18 0.04
Reject? N N N N N N N N

BIC 3991.96 4001.65 4011.48 4010.38 990.52 995.93 1005.40 1005.18

Notes: Raw Data are quarterly averages of monthly values. Hamilton-Filtered Data are quarterly
averages of monthly values, then Hamilton-filtered with quarterly parameters h = 8 and p = 4. Sig-
nificance level α = 1%. Sample = 1979Q4–2019Q4.

structure exists between them. Namely, the number of workers exiting employment into
unemployment (EU ) Granger-causes the number of workers exiting unemployment into
employment (UE).

4 Identifying Unemployment Shocks

The evidence presented in Section 3 motivates a particular identification strategy of the
disturbances that affect unemployment over the business cycle. Namely, the lead-lag
structure suggests that disturbances to unemployment and unemployment outflows af-
fect unemployment inflows only with a lag. I identify innovations in worker flows using a
mixture of zero and sign restrictions following the methodology of Arias et al. (2018). The
subsections below detail the setup of the empirical model and the identification strategy.

4.1 Model Setup

Consider the empirical VAR model in reduced-form as follows

yt = b0 +
L∑
l=1

Blyt−l + µt (5)

where yt is a (k × 1) vector of endogenous variables at time t, b0 is a (k × 1) vector of
intercept terms, Bl is a (k × k) matrix of coefficients for each lag length l, L is the total
number of lags in the system, and µt is a (k × 1) vector of reduced-form residuals at
time t. Assume that µt ∼ N (0,Σ), so that the residuals are normally distributed, with
mean zero and (k × k) variance-covariance matrix Σ. Moreover, assume that the vector
of reduced-form residuals µt is related to the (k × 1) vector of structural shocks εt in the
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following manner:
µt = Aεt (6)

Here, it is assumed that εt ∼ N (0, I) so that the structural shocks are normally distributed,
with mean zero, unit variance, and zero cross-correlation. A is a (k× k) matrix referred to
as the “impact matrix” because it captures the immediate effect that structural shocks εt
have on the endogenous variables in yt.

Identifying the above system requires placing restrictions on the matrix A such that
the structural shocks εt can be recovered from the reduced-form residuals µt. Note that
due to the relationship between εt and µt, the following holds: Σ = Var(µt) = Var(Aεt) =

AVar(εt)A
′ = AIA′ = AA′. Therefore, since the matrix Σ is symmetric, it is sufficient to

place k(k − 1)/2 restrictions on the matrix A in order to identify the structural shocks in
Equation (6). I now turn to the method I use to set these restrictions and how they relate
to the motivating evidence in Section 3.

4.2 Identification Strategy

I consider a four-variable system with the job separation probability Xt, the job finding
probability Ft, the unemployment rate ut, and average unemployment duration dt, in that
order. The ordering of the variables in the VAR is motivated by the evidence discussed
in Section 3. In particular, the job separation probability leads both the job finding prob-
ability and the unemployment rate. This motivates the use of zero impact restrictions on
innovations to the impact of these variables on Xt.

However, since there are 4 variables in the model, the system requires additional
identifying restrictions.7 I appeal to the relationship between worker flows and the dis-
tribution of unemployment duration to impose these additional restrictions. Consider a
decrease in the job finding probability. All else equal, the unemployment rate will rise
because of the reduced flow of workers out of the unemployment pool. Additionally,
since workers face a lower probability of leaving unemployment, they remain in the un-
employment pool for longer. Therefore, innovations to the finding probability cause the
unemployment rate and average unemployment duration to move in the same direction.

Consider an increase in the job separation probability. All else equal, the unemploy-
ment rate will rise because of the increased flow of workers into the unemployment pool.
Additionally, since these workers have an unemployment duration of 0 by construction,
the mean of the unemployment duration distribution must fall. Therefore, innovations to

7See the discussion in Section 2.2 of Arias et al. (2018).
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Table 3: Identifying Restrictions

Unemployment
Inflow Outflow Level Length

Job separation probability + 0 0
Job finding probability −
Unemployment rate + + +
Average unemployment duration − + +

Notes: As suggested by Arias et al. (2018), all restrictions are imposed on impact.

the job separation probability cause the unemployment rate and average unemployment
duration to move in opposite directions.

Table 3 summarizes these restrictions. In total, I identify four shocks, which I label
as shocks to the Unemployment Inflow, Unemployment Outflow, Unemployment Level,
and Unemployment Length. Note that I also impose regularity conditions (along the
diagonal) such that the shocks are contractionary. For instance, a shock to the unemploy-
ment outflow is associated with a fall in the job finding probability.

4.3 Estimation

I use quarterly data on Xt, Ft, ut, and dt from 1948Q1 to 2019Q4 and include 4 lags of
the endogenous variables in my baseline specification.8 As discussed in Section 2, using
the two-state model to measure the job finding and job separation probabilities allows for
a larger sample, whereas using the three-state model produces worker flow series that
begin in 1976Q1. I take quarterly averages of monthly values and filter the data using the
Hamilton (2018) filter with the suggested quarterly parameters, h = 8 and p = 4. This
ensures that the data are all expressed in the same units: percentage deviations from their
respective trends.

Because my identification strategy uses a combination of zero and sign restrictions,
I implement the methodology developed in Arias et al. (2018) to estimate the shocks.9

The idea is draw the reduced form coefficients Bl, the variance covariance matrix of the
residuals Σ, and an orthogonal rotation matrix Q that maps the structural shocks into
the reduced form residuals, and keep draws of these matrices if the resulting impulse re-
sponse functions satisfy the sign and zero restrictions. In particular, conditional on a draw

8The BIC suggests using more than 12 lags, which would increase the computational load considerably.
Results are robust to using 1, 4, 8, or 12 lags in the system.

9I make use of existing codes from the Empirical Macro Toolbox (EMT) developed by Filippo Ferroni and
Fabio Canova. See Ferroni and Canova (2022) for a guide to the toolbox.
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of (Bl,Σ), the zero restrictions in the identification strategy impose linear restrictions on
the columns of Q. Then, conditional on (Bl,Σ, Q) that satisfies the zero restrictions, one
checks to see if the sign restrictions are satisfied and discards the draw if they are not. I
use conjugate priors such that the prior and posterior densities come from the same family
of distributions. The draws of (Bl,Σ) are from a normal-inverse-Wishart distribution and
the draws of Q are from a uniform distribution, conditional on (Bl,Σ). I implement the
algorithm in Matlab using 10,000 draws.

5 The Effects of Unemployment Shocks

I now discuss the estimated effects of the unemployment shocks on the variables in the
VAR system. Then, I use local projection methods to estimate the effects of these shocks
on auxiliary labor market variables. I discuss how the estimated responses of the auxil-
iary variables shed light on the underlying forces at work. Next, I formally decompose
the variance of each variable in the system into the components accounted for by each
shock. Lastly, I compute the forecast error variance decomposition (FEVD) and historical
decomposition (HD) for specific recessionary episodes and discuss their implications.

5.1 Response to Unemployment Inflow and Outflow Shocks

Figure 3 contains the estimated impulse response functions to a shock to the first variable
in the VAR system. I label this shock an “unemployment inflow” shock, as it is associated
with the job separation probability. The job separation probability rises by about 5% on
impact and then remains elevated relative to trend for almost two years. The job finding
probability falls slightly on impact, troughs at about -4% after 2-3 quarters, and then
slowly returns to trend. The unemployment rate displays a hump-shaped pattern in that
it initially rises, peaks about 4 quarters after the shock, and then subsequently returns to
trend. Note that the response of the unemployment rate is driven by the joint dynamics
of the job separation and job finding probabilities. An initial spike in job separations
causes the unemployment rate to increase on impact; it then rises further because of the
decrease in the job finding probability. Average unemployment duration initially falls
due to spike in unemployment inflows, but subsequently rises as workers accumulate in
the unemployment pool and the job finding probability falls.

Figure 4 shows the response of the variables in the system to a (contractionary) shock
to the the second variable in the system, the job finding probability, which I label a “un-
employment outflow” shock. Recall that under my identification assumptions, an unem-
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Figure 3: Response to Unemployment Inflow Shock
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Notes: Response to a one standard deviation (contractionary) structural shock. Units are percentage
deviations from trend. Black, solid lines display the median response. Dark gray bands represent the
68% credible set. Light gray bands represent the 90% credible set.

ployment outflow shock may not affect the job separation probability on impact. In re-
sponse to this shock, there is not a significant reaction of the job separation probability at
any horizon, though separations do rise slightly in the first 1-4 quarters under the median
impulse response function. The job finding probability falls on impact and slowly returns
to trend, meaning that an initial fall in unemployment outflows has a persistent effect on
the rate at which workers find jobs out of unemployment. Both the unemployment rate
and the average unemployment duration rise significantly on impact and remain elevated
for several quarters relative to trend.

5.2 Responses of Other Variables

Exploring the effects of the identified unemployment shocks on additional variables helps
to unpack the underlying structural forces these shocks capture. I therefore use local
projection methods (Jordà, 2005) to estimate the impact of unemployment inflow and
outflow shocks on auxiliary labor market variables. Let ε̂it represent an identified shock
to variable i at time t. To recover the time series of each ε̂it, I use the median response
implied by my sign restriction approach and invert the resulting impact matrix to back
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Figure 4: Response to Unemployment Outflow Shock
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Notes: Response to a one standard deviation (contractionary) structural shock. Units are percentage
deviations from trend. Black, solid lines display the median response. Dark gray bands represent the
68% credible set. Light gray bands represent the 90% credible set.

out the structural shocks according to Equation 6. Then, I estimate the equation

xt+h = αh + βhε̂
i
t + et+h (7)

for different horizons h and for different outcome variables xt+h. The coefficients βh cap-
ture the response of the outcome variable to the shock at horizon h, providing an estimate
the impulse response function (Plagborg-Møller and Wolf, 2021).

I examine the responses of U -to-E gross flows, E-to-U gross flows, and vacancies to
unemployment inflow and outflow shocks. As shown in Figure 1, both gross flow se-
ries are countercyclical, so shocks that are associated with large recessionary increases in
unemployment should also lead to increases in gross worker flows. The response of job
openings is informative about the degree to which my estimated shocks generate Bev-
eridge Curve dynamics, which has been a central focus of the search-and-matching liter-
ature. Collectively, examining these auxiliary impulse responses also serves as a check on
the validity of the identification approach.

Figure 5 plots the response of gross flows and vacancies to a contractionary unem-
ployment inflow shock. After an increase in unemployment inflows, the total number of
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Figure 5: Response to Unemployment Inflow Shock
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Notes: Gross flow series constructed as described in Section 2. Vacancy series is the help-wanted
index from Barnichon (2010). Black solid lines show estimated βh coefficients. Gray bands show 95%
confidence intervals. Dependent variables are in log-levels so that units are percent changes.

workers moving from employment to unemployment (center panel) initially rises. It then
increases to a peak change of almost 20% around 5 quarters before returning to its initial
level. The gross flow of workers between unemployment and employment (left panel)
does not change on impact, but eventually rises by just under 15%, also peaking around
5 quarters after the shock. Note that these patterns are consistent with the evidence pre-
sented in Figure 1; both EU and UE gross flows rise in contractionary periods and EU

gross flows rise by more. Lastly, vacancies decline considerably in response to a contrac-
tionary unemployment inflow shock, falling by almost 40% a year after the shock. This
pattern is consistent with not only a decline in labor market tightness during a recession
(as the unemployment rate also rises), but also the decrease in the job finding probability
in response to an inflow shock shown in Figure 3. In sum, unemployment outflow shocks
seem to be associated with realistic behavior of labor market variables during a recession.

Figure 6 plots the responses of the same three variables to an unemployment outflow
shock. In contrast, unemployment outflow shocks do not seem to replicate the empir-
ical patterns referenced above. Though the point estimates show that EU gross flows
increase by a greater magnitude than UE gross flows, neither response is meaningfully
large at the given level of statistical significance. The same is true of the response of va-
cancies, as the estimated impulse response function is not significant for any horizon.
It therefore seems that both unemployment inflow and unemployment outflow shocks
capture features of the recessionary labor market, but unemployment inflow shocks are
more promising candidates for generating realistic unemployment dynamics, as they are
consistent with additional business cycle patterns of key variables.
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Figure 6: Response to Unemployment Outflow Shock
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Notes: Gross flow series constructed as described in Section 2. Vacancy series is the help-wanted
index from Barnichon (2010). Black solid lines show estimated βh coefficients. Gray bands show 95%
confidence intervals. Dependent variables are in log-levels so that units are percent changes.

5.3 Contribution to Unemployment Volatility

I now assess the contribution of each structural shock to the volatility of unemployment.
To do so, I compute the variance of each of the endogenous variables under specific shock
combinations. I derive a closed form expression for the variance of any particular variable
in a V AR(p) model in Appendix B and use the formulas in this section.

Let Var(yt|εit) denote the variance of the variables in the vector yt under a particular
structural shock εit. The total variance of yt is equal to the sum across i of Var(yt|εit) because
the structural shocks are independent. Therefore, we can decompose the variance of each
endogenous variable into the components accounted for by each structural shock. This
procedure is similar in spirit to the forecast error variance decomposition (FEVD), which
I discuss below, but it does not fix a particular horizon.

Table 4: Shock Contribution to Endogenous Variable Variance

Inflow Outflow Level Length Total

Job separation probability 57.44 6.23 11.05 25.28 100%
Job finding probability 31.98 20.9 28.59 18.54 100%
Unemployment rate 50.33 16.32 19.05 14.3 100%
Average unemployment duration 32.23 24.07 25.39 18.32 100%

Notes: Each element of the table contains the percentage of the overall variance of a given
variable explained by a particular shock under the median of the estimated coefficients.
Total column shows the sum across the Inflow, Outflow, Level, and Length columns.

Table 4 shows the results of this decomposition for each variable in my baseline spec-
ification. As noted above, summing across the structural shocks returns the overall vari-
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ance of the endogenous variables, so the columns sum to 100% by construction. Focusing
first on the the unemployment inflow shock, we can see that it explains a large fraction of
each of the variables in the system. It naturally explains a large portion of the variance of
the job separation probability, but also plays a large role in the variance of the job finding
probability and average unemployment duration. This is because, as discussed above,
job finding falls and average unemployment duration eventually rises substantially in
response to an increase in unemployment inflows (Figure 3). Unemployment outflow
shocks also play a considerable role in changes in the job finding probability and average
unemployment duration.

Next, the row corresponding to the unemployment rate shows that the unemploy-
ment inflow shock explains the majority of the variance in the unemployment rate. In
particular, unemployment inflow shocks account for over 50% of unemployment rate
fluctuations, while unemployment outflow shocks account for only about 16%, in line
with the contributions of the other two shocks. It would therefore be tempting to con-
clude from this decomposition alone that job separation (the “ins” of unemployment)
plays a larger role in unemployment fluctuations than job finding (the “outs” of unem-
ployment). However, this decomposition also relies on the endogenous responses of the
variables in the VAR system, which confound the roles played individually by the job
finding and job separation probabilities. I therefore turn to the next decomposition to
separate their contributions.

Shutting Down Interaction Table 5 shows the results from the same decomposition,
shutting down interaction effects between the job finding and job separation probabilities.
In particular, I set the VAR coefficients on lags of Ft in the Xt equation and on lags of Xt

in the Ft equation to 0. If part of the large role of unemployment inflow shocks in the
variance of the unemployment rate is due to the endogenous, negative response of the
job finding probability, we should see a smaller role for these shocks in unemployment
fluctuations. The third row of the table shows that this is indeed the case, where the
contribution of unemployment inflow (outflow) shocks decreases (increases) from 50%
(16%) to 40% (19%). Note that in percentage terms, both of these changes are similar in
magnitude, about 20% in either case. Moreover, the contribution of the unemployment
inflow shock to the variance of the job finding probability declines as well, from over
31% to just under 29%. Clearly, the interaction between job finding and job separation
affects any conclusions drawn the contribution of both margins to unemployment rate
movements.

The results of these decompositions caution against the interpretation that changes
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Table 5: Shock Contribution to Endogenous Variable Variance, No Interaction

Inflow Outflow Level Length Total

Job separation probability 50.66 11.42 12.86 25.06 100%
Job finding probability 28.64 20.86 25.69 24.81 100%
Unemployment rate 37.53 19.49 22.3 20.68 100%
Average unemployment duration 29.35 22.52 24.68 23.44 100%

Notes: Each element of the table contains the percentage of the overall variance of a given
variable explained by a particular shock under the median of the estimated coefficients,
with the interaction between job finding and job separation turned off. Total column
shows the sum across the Inflow, Outflow, Level, and Length columns.

in the job finding probability are solely or primarily responsible for business cycle fluc-
tuations in the unemployment rate. Whereas Shimer (2012) finds that the contribution of
job finding is 2-3 times larger than the contribution of job separation to unemployment
volatility, my results are more in line with those of Fujita and Ramey (2009), who find
that fluctuations in the separation probability explain between 40 and 50% of fluctuations
in unemployment. I find that while the job separation probability has a quantitatively
larger contribution, both margins play a substantial role in driving unemployment dy-
namics. Moreover, allowing for an innovation in job separations to endogenously cause
job finding to respond changes the conclusions regarding the contribution of each margin
to overall unemployment volatility.

5.4 Forecast Error Variance Decomposition

I also compute the forecast error variance decomposition (FEVD) to further explore the
role of the shocks at different horizons. Figure 7 plots this decomposition for the main
variables of interest: the job separation probability, the job finding probability, and the
unemployment rate. As is also apparent from Table 4, unemployment inflow shocks play
a large role in driving unemployment dynamics. The left panel shows that they contribute
to about 80% of fluctuations in the job separation probability in a 5-year window. The
remaining 20% are attributed to unemployment length shocks, which are associated with
innovations to average unemployment duration. This result likely stems from the inverse
relationship between job separations and the unemployment duration distribution. Times
when workers are flowing into unemployment are times when average unemployment
duration are falling and vice versa.

The center panel of Figure 7 shows that unemployment inflow shocks also drive the
bulk of both job finding and unemployment fluctuations, but their contribution changes
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Figure 7: Forecast Error Variance Decomposition
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Notes: Figure shows the percentage of the unpredictable component of each variable accounted for
by different shocks across horizons, calculated using pointwise median impulse response functions.

significantly across horizons. Indeed, unemployment outflow shocks play a significant
role in both job finding and unemployment changes at shorter horizons. They comprise
the majority share job finding probability fluctuations at shorter horizons (1-4 quarters),
a pattern masked by the results presented in Table 4. At longer horizons, however, un-
employment inflow shocks dominate. The large contribution of these shocks at longer
horizons results from the endogenous response of the job finding probability to an un-
employment inflow shock (Figure 3), whereby the job finding probability falls for several
quarters following a spike inE-to-U flows. The FEVD also makes clear that while both job
finding and job separation play an important role in unemployment fluctuations in an ac-
counting sense, it is shocks to unemployment inflows that are quantitatively more relevant.
Identifying innovations in worker flows therefore serves to distinguish the two margins,
providing a more complete picture of the forces responsible for driving the business cycle
dynamics of unemployment.

5.5 Historical Decomposition

Lastly, I assess the contribution of unemployment shocks to labor market dynamics dur-
ing different historical episodes. While the variance decomposition and forecast error
variance decomposition show that unemployment inflow shocks play a larger role than
unemployment outflow shocks on average, their contributions may not be constant across
recessions. Each U.S. recession has been driven by a different combination of macroeco-
nomic disturbances. Because my identified unemployment shocks likely capture a conflu-
ence of underlying structural forces, they should also display different roles in different
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Figure 8: Historical Decomposition, 2001 Recession
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Notes: Figure shows shock contribution to the evolution of each variable, calculated by taking the
median HD across draws. Black, solid line shows the actual level of the given variable, which may
not line up exactly due to the contribution of the initial condition.

economic downturns. I therefore compute the historical decomposition (HD) and com-
pare the role of unemployment inflow and outflow shocks in the 2001 and 2008 recessions.

Figure 8 plots the HD for the 2001 recession. From the left panel, we can see that
unemployment inflow shocks primarily drive changes in the job separation probability,
consistent with the results above. However, the center panel reveals that both unem-
ployment inflow and unemployment outflow shocks played a large role in driving job
finding dynamics in this recession. Early in the recession, unemployment outflow shocks
accounted for the majority share of the sharp drop in the job finding probability. After
the end of the recession according to the NBER recession dates (shown in dark, grey bars
in the figure), both unemployment inflow and outflow shocks accounted for a depressed
job finding probability into the early stages of recovery. As the job finding probability
recovered after 2002, the role of unemployment inflow shocks diminished, disappearing
almost completely by the end of 2003.

Turning to the right panel, we can see that unemployment outflow shocks accounted
for the largest portion of the increase in the unemployment rate during this period. While
unemployment inflow shocks also played a role, their contribution becomes negligible by
the end of 2002. This result is a direct implication of the findings above: unemployment
inflow shocks lead to endogenous movements in the job finding probability (Figure 3);
because they are not as important in driving the job finding probability during this period
(Figure 8b), unemployment outflow shocks must dominate. Therefore, this recession was
characterized more so by a depressed job finding rate than by an increased separation
rate. The same may not apply to all recessions, however.
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Figure 9: Historical Decomposition, 2008 Recession
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Notes: Figure shows shock contribution to the evolution of each variable, calculated by taking the
median HD across draws. Black, solid line shows the actual level of the given variable, which may
not line up exactly due to the contribution of the initial condition.

For instance, Figure 9 shows that the opposite conclusion holds for the 2008 recession.
Unemployment inflow shocks accounted for the majority share of fluctuations in the job
separation probability, job finding probability, and unemployment rate during this pe-
riod. As discussed, this is because they endogenously lead to drops in the job finding
probability, putting further upward pressure on the unemployment rate. This recession
was characterized by a large and persistent increase in the unemployment rate and a slow
recovery. The historical decomposition of this period reveals that this was due to elevated
unemployment inflows and the associated decline in the speed with which unemployed
workers found new jobs. Interestingly, unemployment level shocks also played a large
role in unemployment dynamics during this period. I interpret these shocks as capturing
any forces that result in changes in the unemployment rate holding both E-to-U flows
and U -to-E flows constant. For instance, they may capture movements into and out of
the labor force. Their large role in unemployment fluctuations during the 2008 recession
and subsequent recovery makes sense in the context of the large decline in labor force
participation during this period. Indeed, the right panel shows that they had become the
dominant force in driving the unemployment rate by the end of 2010.

Collectively, this analysis reveals that studying the role of unemployment inflows
and unemployment outflows in conjunction paints a more accurate picture of labor mar-
ket dynamics. Though the variance decomposition exercises above revealed that unem-
ployment inflows shocks are the quantitatively dominant force on average, they played
drastically different roles in different recessions. Moreover, assessing the endogenous re-
sponse of labor market variables to unemployment shocks is crucial for understanding
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their effects. Therefore, focusing only on a particular margin of worker flows may lead to
misleading conclusions about unemployment fluctuations.

6 Implications for Models of the Labor Market

I now discuss the implications of my empirical results for theoretical models of search
and unemployment in labor markets. First, I briefly discuss the various underlying forces
that my crude structural shock estimates likely capture.

6.1 Discussion of Structural Shocks

Though I refer to the job separation shock and the job finding shock as “structural shocks,”
I do not think of them as fundamental, underlying macroeconomic disturbances. Rather,
they are attempts to isolate changes in job separation and job finding probabilities that
are plausibly exogenous to prevailing labor market conditions. They likely capture the
responses of worker flows to deeper changes in the aggregate economy, but in this sense,
studying the response of labor market variables to these shocks is informative about what
underlying structural forces are at play. In particular, my empirical approach does not im-
pose how job finding reacts to an innovation in job separations. Instead, I estimate across
several specifications that the job finding probability falls after an increase in job separa-
tions. Moreover, I do not restrict the job finding probability to be constant when assessing
the contribution of job separations to unemployment volatility. I find that this alters the
degree to which job finding versus job separation accounts for movements in the unem-
ployment rate. Therefore, though my identification strategy is simplistic and likely does
not capture the true structural origins of labor market fluctuations, it nonetheless yields
empirical moments that serve to discipline macroeconomic models of the labor market.

6.2 Theories of Unemployment

The evidence I present in this paper shows that changes in the inflow to unemployment
should not be ignored in analyzing the cyclical behavior of the labor market. The strong
pattern of Granger causality that I establish in Section 3 suggests that countercyclicalE-to-
U flows help give rise to unemployment fluctuations. My empirical methodology formal-
izes the role of job separations in driving unemployment, and I find that job separation
shocks have a large and significant contribution to unemployment volatility. Therefore,
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treating job separations as exogenous and acyclical in models of the labor market misses
one of the key factors responsible for increased unemployment in recessions.

Moreover, allowing for a dynamic interaction between job separation and job finding
affects the degree to which changes in either margin contribute to the overall variance of
unemployment. I estimate that the job finding reacts significantly to job separation shocks
and vice versa. My results point to a role for increased separations in driving down the job
finding probability in recessions, potentially through one of the mechanisms referenced
in the literature review. In this sense, my results are in line with the conclusions of other
studies that economists should jointly consider the behavior of unemployment inflows
and outflows. For instance, Elsby et al. (2009) declare that “everyone’s winner” and rejects
attempts to analyze the two margins separately.

In terms of economic modeling, my paper suggests a return to the considerations that
motivated the original Mortensen and Pissarides (1994) study. These authors included an
endogenous separation margin in their model exactly to explain the rise in unemploy-
ment inflows at the beginning of an economic downturn. However, in subsequent anal-
yses, the endogenous separation margin dropped out of these models and focus turned
instead to explaining what factors determine fluctuations in the job finding rate. For in-
stance, Shimer (2005), which concluded that productivity shocks in the DMP framework
cannot quantitatively generate unemployment fluctuations in line with those in the data,
notably does not feature endogenous separations. Gavazza et al. (2018) motivate their pa-
per by appealing to the Shimer (2012) result that “swings in the job-finding rate account
for the bulk of unemployment fluctuations.”

Studies that reintroduce a role for endogenous job separation (e.g. den Haan et al.,
2000; Fujita and Ramey, 2012; Coles and Moghaddasi-Kelishomi, 2018, among others)
find that the picture is more complicated. These papers show that by making small mod-
ifications to the DMP framework, the model can capture labor market fluctuations both
qualitatively and quantitatively. A recent study by Hall and Kudlyak (2022) draws at-
tention to a persistently elevated separation rate as a potential feedback mechanism to
explain why unemployment falls slowly after a recession. My results support the notion
that the job separation margin should be modeled explicitly in theories of unemployment.

7 Conclusion

In this paper, I develop a methodology to assess how inflows to versus outflows from the
pool of unemployed workers drive the dynamics of the unemployment rate. In a reces-
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sion, unemployment may rise if it is harder for workers to find jobs or if more workers
lose jobs. This question has been widely studied by macro and labor economists, but to
my knowledge, no consensus exists regarding which channel is more important.

My analysis uses two different types of worker flows series that measure how of-
ten workers move between employment and unemployment. While gross flows measure
the total number of workers who transition between labor market states, flow probabil-
ities measure the likelihood these transitions occur. I show that regardless of the series
used, job separation precedes job finding in time. Importantly, however, the probability
a worker transitions from unemployment to employment is procyclical while the gross
flow of workers from unemployment to employment is countercyclical.

I estimate a VAR model under an identification strategy motivated by this evidence
and use my estimates to decompose changes in the unemployment rate into the contribu-
tions of job finding and separation. I find that both margins account for a significant frac-
tion of unemployment volatility. Unlike models of unemployment fluctuations that ab-
stract from endogenous movements in job separation, my results suggest that economists
should endeavor to understand the reasons why more workers lose jobs during recessions
in conjunction with the reasons why jobs become harder to find.
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A Details on Measurement

A.1 Time Aggregation Bias

Let Pt denote the monthly, discrete time Markov transition matrix between labor market
states. In my application, this is a 3×3 matrix with non-negative entries and columns that
sum to 1.10 The continuous time counterpart to Pt, which I denote Λt, can be recovered
from the formula below.

Λt = OtNtO
−1
t (A.1)

In this formula, Ot is the matrix of eigenvectors of Pt and Nt is a diagonal matrix con-
taining the natural logarithm of the corresponding eigenvalues. Such a decomposition is
possible as long as Pt has distinct, real, and positive eigenvalues, which is the case in my
sample and also holds in the Shimer (2012) data. Lastly, I construct the time aggregation
adjusted, monthly, discrete time Markov transition matrix by converting the continuous
time transition rates back to transition probabilities. Let πAB

t denote an element in Πt and
let λAB

t denote an element in Λt for two different labor market states A and B. Then,

πAB
t = 1− exp(−λAB

t ) (A.2)

A.2 Short-Term Unemployment

The 1994 CPS redesign introduced a discontinuity in the short-term unemployment rate
series U s

t . Beginning in 1994, the CPS introduced dependent interviewing techniques
such that only individuals in rotation groups 1 and 5, the “incoming rotation groups,”
are asked explicitly about their unemployment duration, while unemployment duration
for workers in other rotation groups is imputed. The discontinuity produces a structural
break in both the job finding probability Ft and the job separation probability Xt in 1994
that is visible in the level of each series. Following Shimer (2012), I use CPS microdata to
correct for this discontinuity.11 I download data on unemployment duration from IPUMS
CPS and keep only individuals in the incoming rotation groups. I then compute the total
number of workers with unemployment duration less than 5 weeks using the appro-
priate sample weights. Therefore, my short-term unemployment series U s

t contains the
published short-term unemployment series from the BLS before 1994, and the estimated
series using CPS microdata after 1994. Appendix Figure A.1 shows both the uncorrected
and corrected flow probabilities, which match those used in Shimer (2012).

10Note that this is because I exclude persons with missing labor force status is either month t− 1 or month t.
11See Shimer (2012) Appendix A for additional detail on how to implement the correction.
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A.3 Replication of Shimer (2012)

Figure A.1: Transition Probabilities in the 2-State Model
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(c) Job Finding (Uncorrected)

1945 1960 1975 1990 2005 2020

20

30

40

50

60

70

80
Percent

19
94

 C
P

S
 R

ed
es

ig
nShimer (2012)

Replicated

(d) Employment Exit (Uncorrected)
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Notes: Black, solid lines show author’s calculations based on the methodology described
in Section 2. Orange, dashed lines show data downloaded from Robert Shimer’s website
(https://sites.google.com/site/robertshimer/research/flows).
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Figure A.2: Transition Probabilities in the 3-State Model
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Notes: Black, solid lines show author’s calculations based on the methodology described
in Section 2. Orange, dashed lines show data downloaded from Robert Shimer’s website
(https://sites.google.com/site/robertshimer/research/flows). Blue, dash-
dot lines show author’s calculations, unadjusted for time aggregation bias.
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A.4 Cyclical Properties of Flows Probabilities, Different Samples

Figure A.3: Detrended Flow Probabilities

(a) U -to-E, Hamilton-Filtered
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(b) E-to-U , Hamilton-Filtered
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(c) U -to-E, HP-Filtered
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(d) E-to-U , HP-Filtered
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Notes: Author’s calculations based on the methodology described in Section 2. Black, solid
lines show flow probabilities for the two-state model. Orange, dashed lines show flow prob-
abilities for the three-state model, unadjusted for time aggregation bias. Blue, dash-dot lines
show flow probabilities for the three-state model, adjusted for time aggregation bias. I take a
quarterly average of monthly values before applying the respective filter. I set the horizon h
and lag p parameters of the Hamilton filter to 8 and 4 quarters, respectively. I set the smoothing
parameter of the HP filter to 1,600.
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B Derivations and Proofs

This appendix contains additional detail on the decompositions I perform in Section 5 of
the paper. Below, I show how to compute the shock contribution to the variance of the
endogenous variables in closed form. I also provide the formulas I use to construct the
forecast error variance decomposition and historical decomposition.

B.1 Closed-Form Solution for Variance of VAR(p)

Let the vector autoregression (VAR) model of order p be given by the equation below.12

Yt = B0 +B1Yt−1 +B2Yt−2 + · · ·+BpYt−p + Ut (B.3)

Let n be the number of variables in the model. In the equation above, Yt is a n× 1 column
vector of endogenous variables, Ut is a n×1 column vector of (reduced-form) residuals,B0

is a n×1 column vector of intercept terms, andB1, . . . , Bp are n×nmatrices of coefficients.

Companion Form First, we transform the VAR(p) model above into a VAR(1) model by
constructing its companion form. Let the variance-covariance matrix of the residuals Ut

be given by Var(Ut) = Σ. Let Yt denote the np × 1 stacked column vector of endogenous
variables and let Ut denote the np × 1 stacked column vector of residuals. Let B0 denote
the np × 1 stacked column vector of intercept terms and B1 denote the np × np matrix of
coefficients. These objects and their relationship to Equation (B.3) are given below.

Yt

Yt−1
...

Yt−p


︸ ︷︷ ︸

Yt

=


B0

0
...
0


︸ ︷︷ ︸

B0

+


B1 B2 . . . Bp

In 0 . . . 0
... . . . . . . ...
0 . . . In 0


︸ ︷︷ ︸

B1


Yt−1

Yt−2
...

Yt−p−1


︸ ︷︷ ︸

Yt−1

+


Ut

0
...
0


︸ ︷︷ ︸

Ut

Note that the first row of this relation simply restates Equation (B.3). Each subsequent
row states that Yt−j = Yt−j for j = 1, . . . , p. Therefore, the companion form is given by

Yt = B0 + B1Yt−1 + Ut (B.4)

Notice that this is a VAR model of order 1.

12Note that the notation used to define the VAR is slightly different than in the main text.
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Variance Matrix of Endogenous Variables Define the following expression for the vari-
ance of the vector of endogenous variables.

Γ ≡ Var(Yt) =


Var(Yt) Cov(Yt, Yt−1) . . . Cov(Yt, Yt−p)

Cov(Yt−1, Yt) Var(Yt−1) . . . Cov(Yt−1, Yt−p)
... . . . . . . ...

Cov(Yt−p, Yt) . . . . . . Var(Yt−p)


The matrix Γ is a np × np variance-covariance matrix whose entries Cov(Yt−i, Yt−j) are
themselves n×n variance-covariance matrices. Notice that the diagonal elements of Γ (i.e.
where i = j) are simply the variance of the vector Yt. When working with a (covariance-)
stationary model, Var(Yt) = Var(Yt−1) = · · · = Var(Yt−p) in population. The off-diagonal
elements are simply equal to the covariance of Yt with lags of itself. Hence, Γ has the
familiar symmetry property of variance-covariance matrices.

Variance Matrix of Residuals Define the following expression for the variance of the
vector of residuals.

Ω ≡ Var(Ut) =


Var(Ut) . . . 0

0 . . . 0
... . . . ...
0 . . . 0

 =


Σ . . . 0

0 . . . 0
... . . . ...
0 . . . 0


The matrix Ω is a np × np variance-covariance matrix where the first element is simply
the variance of Yt. All other elements are zero because of the definition of Ut.

Definition B.1. The variance of the endogenous variables in the VAR(p) model is related to (i)
the VAR coefficients and (ii) the variance of the residuals through the formula:

vec(Γ) = (IM −B1 ⊗B1)−1 vec(Ω) (B.5)

where M = (np)2 × (np)2, ⊗ is the Kronecker product, and (·)−1 represents the matrix inverse.13

Proof. Start with the definition of Γ = Var(Yt). Then, plug in the expression for the

13See Hamilton (1994) Chapter 10.2, pages 265-266 for a similar derivation.
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companion form in Equation (B.4) and reduce.

Γ = Var(Yt)

= Var(B0 + B1Yt−1 + Ut)

= Var(B0) + Var(B1Yt−1) + Var(Ut)

= 0 + B1 Var(Yt−1)︸ ︷︷ ︸
Γ

B′1 + Ω

We have that Γ = B1ΓB′1 + Ω. To solve for Γ, we make use of the “vec” operator vec(·).

vec(Γ) = vec(B1ΓB′1 + Ω)

= vec(B1ΓB′1) + vec(Ω)

= (B1 ⊗B1) vec(Γ) + vec(Ω)

Solving for vec(Γ) in the final line yields the desired result in Equation (B.5).

Estimation of Closed-Form Variance We can now make use of the above result con-
tained in Equation (B.5) to compute the sample variance of a VAR(p) model in closed
form. The algorithm for doing so is as follows:

1. Estimate the VAR(p) model given by Equation (B.3).

2. Obtain the estimated coefficients B̂1, . . . , B̂p and estimated variance-covariance ma-
trix of the residuals Σ̂.

3. Construct the companion form coefficient matrix B̂1 and companion form variance-
covariance matrix of the residuals Ω̂.

4. Compute vec(Γ̂) using B̂1, Ω̂, and Equation (B.5). Then compute Γ̂ = vec−1(vec(Γ̂)).

5. The variance-covariance matrix of Yt is the first n rows and n columns of Γ̂.

Therefore, we can find a closed-form estimate of the variance of the VAR(p) model by first
constructing Γ̂, and then taking the appropriate rows and columns.

Γ̂0 ≡ V̂ar(Yt) = Γ̂(1:n,1:n) (B.6)
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Computing Conditional Variance We can use the relationship above to compute the
variance of the endogenous variables conditional on a given structural shock. Notice that
because Ut = AEt,

Σ ≡ Var(Ut) = Var(AEt) = AVar(Et)︸ ︷︷ ︸
In

A′ = AA′

Hence, once we have such a matrixA, we can replace Σ withAA′ in the formulas above to
compute the variance of Yt. To compute the variance of Yt conditional on some structural
shock, we can follow the following procedure:

1. Obtain A using one of the identification procedures discussed below.

2. To compute the variance conditional on the jth structural shock, construct Aj = Aej ,
where ej = [0, . . . , 0, 1, 0, . . . , 0]′ is the column-wise basis vector, with 1 in the jth row
and 0 elsewhere.

3. Replace Σ with AjA
′
j in the formulas above.

Let Var(Yt|ej) denote the variance of the endogenous variables conditional on the jth
structural shock (i.e. where we have constructed Ω using AjA

′
j instead of Σ). Because

variance is additive and the structural shocks are independent, we have that

Var(Yt) =
∑
j

Var(Yt|ej)

For VAR models estimated with sign restrictions, we set A = CQ, where Q is an orthogo-
nal matrix that satisfies the sign restriction and C is the Cholesky decomposition of Σ.

B.2 Formulas for Decompositions

Forecast Error Variance Decomposition (FEVD) Let φ̄i,j,h be the median impulse re-
sponse function of variable i to shock j at horizon h. φ̄i,j,h is obtained by computing the
impulse response function for each (i, j, h) and each draw d, and taking the pointwise
median across draws. Then, the FEVD is given by the formula below.

FEV Di,j,h =

∑h
a=1(φ̄i,j,a)

2∑
j

∑h
a=1(φ̄i,j,a)2

(B.7)
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Historical Decomposition (HD) The historical decomposition allows one to analyze the
counterfactual evolution of each endogenous variable if only certain shocks had hit the
economy during the sample period. Let (Bl,Σ, Q)d denote a draw of the reduced form co-
efficientsBl, the variance covariance matrix of the residuals Σ, and an orthogonal rotation
matrix Q that maps the structural shocks into the reduced form residuals. Let µ̂t,d denote
the vector of reduced form residuals associated with this draw and let ε̂t,d = A−1d µ̂t,d de-
note the vector of structural shocks associated with this draw, where Ad = CdQd is the
impact matrix and Cd is the Cholesky decomposition of Σd. Now, iterate to form

yt,j,d = b0,d +
L∑
l=1

Bl,dyt−l,j,d + ε̂t,dAdej

for each time period t in the sample period, where ej is the jth basis vector, starting from
an initial condition of y0,j,d = [0, . . . , 0]′. The pointwise median of yt,j,d across draws d is
the evolution of yt under only shock j. Plotting yt,j across time for all shocks j = 1, . . . , n

shows the HD.
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C Additional Figures and Tables

C.1 Motivating Evidence Robustness

Figure C.4: Cyclical Properties of Worker Flows (HP-Filtered)

(a) Flow Probabilities
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Notes: Black, solid lines show U -to-E flows. Orange, dashed lines show E-to-U flows. Series
HP-filtered with smoothing parameter 1,600. I take a quarterly average of monthly values before
applying the filter. Monthly series adjusted for seasonal variation and time aggregation bias.

Figure C.5: Cross-Correlations of Flow Probabilities (HP-Filtered)
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(b) ut and Pt+j(EU)
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Notes: Series HP-filtered with smoothing parameter 1,600. I take a quarterly average of monthly
values before applying the filter. Monthly series adjusted for seasonal variation and time aggre-
gation bias. Correlation coefficient is the Kendall rank correlation coefficient. Sample = 1980Q4–
2017Q4.
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